МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №20» Γ . АЛЬМЕТЬЕВСКА РЕСПУБЛИКИ ТАТАРСТАН

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №20» Г. АЛЬМЕТЬЕВСКА РЕСПУБЛИКИ ТАТАРСТАН

«Рассмотрено» Руководитель МО

<u> ЖИК /</u>Н.Н.Ившина /

Протокол №1 от «29» августа 2025г.

«Согласовано» Зам.директора по УР

/Р.Р. Муллабаева/ «29» августа 2025 г. «Утверждаю» Директор

/С.Л.Галанина/ Приказ № 201

от «01» сентября 2025 г.

Аттестационный материал для проведения промежуточной аттестации по физике для обучающихся 10-11 классов за 2025-2026 учебный год

«Принято» педагогическим советом протокол №1 от «29» августа 2025г.

Промежуточная аттестация по физике 10 класс (профильный).

Цель работы: установить динамику индивидуальных образовательных достижений в соответствии с планируемыми результатами освоения основной образовательной программы; установить фактический уровень теоретических знаний и практических умений и навыков, обучающихся по физике по основным темам курса физики в 10 классе.

Форма проведения промежуточной аттестации – тестирование в письменном виде.

Структура работы: работа состоит из двух частей и содержит 10 заданий: 3 задания с выбором ответа, 4 задания с кратким ответом, 2 задания на соответствие и 1 задание с развёрнутым ответом.

Часть 1: (задания 4,5,7) к каждому заданию с выбором ответа приводится 4 варианта ответа, из которых только один верный. К заданиям 1-3,6 необходимо записать ответ.

В части 1 осуществляется контроль теоретических знаний учащихся, знание обозначений физических величин и единиц их измерения, знание основных формул для расчёта физических величин. Предлагаются задачи для контроля практических умений и навыков учащихся по решению стандартных задач, соответствующих обязательным требованиям школьной программы по физике.

Часть 2 (задания 8,9): содержит два задания на соответствие, в которых ответ необходимо записать в виде набора цифр и одно задание (10), требующее полного решения задачи. Ответы на задания с развёрнутым ответом записываются под условием задачи, в отведенном для этого месте. Используется непрограммируемый калькулятор (на каждого ученика) и справочные данные, приведённые в контрольно-измерительных материалах. За выполнение работы выставляются две оценки: в виде количества набранных баллов, и по 5-бальной системе. Переводная шкала приведена в таблице. При выполнении работы можно пользоваться черновиком. На выполнение тестовой работы по физике отводится 45 минут.

В каждом варианте работы перед каждым типом задания предлагается инструкция, в которой приведены общие требования к оформлению ответов.

На основе баллов, выставленных за выполнение всех заданий работы, подсчитывается тестовый балл, который переводится в отметку по пятибалльной шкале в соответствии с рекомендуемой шкалой оценивания, приведенной в инструкции по проверке работы.

Максимальное количество баллов за выполненную без ошибок работу- 14 баллов.

Шкала для перевода первичных баллов в пятибалльную систему:

«2»	«3»	«4»	«5»	
0-5	6-8	9-11	12-14	

Система оценивания:

Часть 1: за выполнение каждого задания выставляется 1 балл.

Часть 2: задания 8,9 оцениваются в 2 балла, если верно указаны все элементы ответа, в 1 балл, если правильно указаны один и более элементов, и в 0 баллов, если ответ не содержит элементов правильного ответа.

Задание 10 оценивается в 3 балла. За задание ученик получает от 0 до 3 баллов.

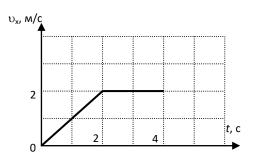
Содержание верного ответа и указание по оцениванию заданий 3 части	Баллы			
Приведено полное правильное решение, включающее следующие	3			
элементы:				
• верно записано краткое условие задачи				

• записаны формулы, применение которых необходимо и достаточно для решения задачи выбранным способом	
• выполнены необходимые математические преобразования и расчёты,	
приводящие к правильному числовому ответу, и представлен ответ	
• верно записано краткое условие задачи	2
• записаны формулы, применение которых необходимо и достаточно для	
решения задачи выбранным способом	
• не записан ответ или дан неполный ответ или допущена одна	
вычислительная ошибка, с ее учетом решение доведено до ответа	
• верно записано краткое условие задачи	1
• записаны формулы, применение которых необходимо и достаточно для	
решения задачи выбранным способом	
• нет решения вычислительного характера	
Другие случаи, не соответствующие указанным выше критериям	0

Кодификатор элементов содержания для проведения промежуточной аттестации учащихся 10 класса по физике.

1	МЕХАНИКА		
1.1	КИНЕМАТИКА		
	1.1.1	Механическое движение и его виды.	
	1.1.2	Относительность механического движения.	
	1.1.3	Скорость.	
	1.1.4	Ускорение.	
	1.1.5	Уравнения прямолинейного равноускоренного движения.	
	1.1.6	Свободное падение.	
1.2	ДИНАМИК	Ā	
	1.2.1	Сила. Принцип суперпозиции сил.	
	1.2.2	Законы динамики: третий закон Ньютона.	
	1.2.3	Силы в механике: сила тяжести.	
	1.2.4	Силы в механике: сила упругости.	
1.2.5 Силы в механике: сила трения.		Силы в механике: сила трения.	
1.3	ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ		
	1.3.1	Кинетическая энергия.	
	1.3.2	Потенциальная энергия.	
	1.3.3	Закон сохранения механической энергии.	
2		МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА.	
2.1	МОЛЕКУЛ	ЯРНАЯ ФИЗИКА	
	2.1.1	Уравнение Менделеева-Клапейрона.	
2.2 ТЕРМОДИНАМИКА		НАМИКА	
	2.2.1	Внутренняя энергия.	
	2.2.2	Количество теплоты.	
	2.2.3	Первый закон термодинамики.	
3		ЭЛЕКТРОДИНАМИКА	

3.1	ЭЛЕКТРИЧЕС	ЕКТРИЧЕСКОЕ ПОЛЕ		
	3.1.1	Закон Кулона.		
3.2	ЗАКОНЫ ПОС	ВАКОНЫ ПОСТОЯННОГО ТОКА		
	3.2.1	Электрический ток. Сила тока, напряжение, электрическое сопротивление.		
	3.2.2	Конденсатор.		
	3.2.3	Параллельное и последовательное соединение проводников.		


Ответы к заданиям:

Номер	Вариант 1	
задания		
1	6	
2	19	
3	550	
4	1	
5	2	
6	7,5	
7	БиВ	
8	21	
9	131	
10	0,15 м	

ВАРИАНТ 1 Часть 1

К заданиям 4,5,7 даны 4 варианта ответа, из которых только один правильный. В заданиях 1-3,6 необходимо записать ответ.

- **1.** Тело движется по оси Ox. На графике показана зависимость проекции скорости тела на ось Ox от времени. Каков путь, пройденный телом к моменту времени t = 4 с?
- **2.** На горизонтальном полу стоит ящик массой 12 кг. Коэффициент трения между полом и ящиком равен 0,27. К ящику в горизонтальном направлении прикладывают силу 19 Н. Какова сила трения между ящиком и полом?

3. Внешние силы совершили над газом работу 150 Дж, при этом внутренняя энергия газа увеличилась на 700 Дж. Какое количество теплоты газ получил?

4 . Объём 5 моль водорода в сосуде при температуре 250 К и давлении p_1 равен V_1 . Чему равен объём 5 моль кислорода в сосуде при той же температуре и том же давлении?
1) V_1 2) $8V_1$ 3) $24V_1$ 4) $V_1/8$
5. Расстояние между двумя точечными электрическими зарядами увеличили в 3 раза, а один из зарядов уменьшили в 2 раза. Сила электрического взаимодействия между ними 1) увеличилась в 6 раз 2) уменьшилась в 6 раза 3) увеличилась в 0,75 раза 4) уменьшилась в 0,75 раз 3r
6. На рисунке показан участок цепи постоянного тока. Каково сопротивление этого участка, если $r = 3$ Ом?
7. Чтобы экспериментально проверить, что жесткость упругого стержня зависит от его длины, надо использовать пару стальных стержней
1) А и Б 2) Б и В 3) В и Г 4) Б и Г
Часть 2
В задании 8,9 требуется указать последовательность цифр, соответствующих правильному ответу (цифры в ответе могут повторяться). В задании 10 необходимо полное решение задачи.
8. Высота полета искусственного спутника над Землей увеличилась с 400 до 500 км. Как изменились в результате этого скорость спутника и его потенциальная энергия? Для каждой велиции и определите соответствующий узрактер изменения:

- 1) увеличится 2) уменьшится 3) не изменится

Скорость спутника	Потенциальная энергия спутника	

- 9. Плоский конденсатор подключили к источнику тока, а затем пространство между пластинами конденсатора заполнили жидким диэлектриком. Что произойдет при этом с электроемкостью конденсатора, напряжением на его пластинах и энергией конденсатора? Для каждой величины определите соответствующий характер изменения:
- 1) увеличится 2) уменьшится 3) не изменится

Электроемкость	Напряжение на пластинах	Энергия конденсатора	

10. Кусок пластилина сталкивается со скользящим навстречу по горизонтальной поверхности стола бруском и прилипает к нему. Скорости пластилина и бруска перед ударом направлены противоположно друг другу и равны $\upsilon_{nn}=15$ м/с и $\upsilon_{6p}=5$ м/с. Масса бруска в 4 раза больше массы пластилина. Коэффициент трения скольжения между броском и столом 0,17. На какое расстояние переместятся слипшиеся брусок с пластилином к моменту, когда их скорость уменьшится на 30%?

Промежуточная аттестация по физике 10 класс (базовый).

Цель работы: установить динамику индивидуальных образовательных достижений в соответствии с планируемыми результатами освоения основной образовательной программы; установить фактический уровень теоретических знаний и практических умений и навыков, обучающихся по физике по основным темам курса физики в 10 классе.

Форма проведения промежуточной аттестации – тестирование в письменном виде.

Структура работы: работа состоит из двух частей и содержит 10 заданий: 3 задания с выбором ответа, 4 задания с кратким ответом, 1 задание на соответствие и 2 задания с развёрнутым ответом.

Часть 1: (задания 2,5,7) к каждому заданию с выбором ответа приводится 4 варианта ответа, из которых только один верный. К заданиям 1,3,4,6 необходимо записать ответ.

В части 1 осуществляется контроль теоретических знаний учащихся, знание обозначений физических величин и единиц их измерения, знание основных формул для расчёта физических величин. Предлагаются задачи для контроля практических умений и навыков учащихся по решению стандартных задач, соответствующих обязательным требованиям школьной программы по физике.

Часть 2: содержит одно задание (8) на соответствие, в котором ответ необходимо записать в виде набора цифр и два задания (9,10), требующие полного решения задачи. Ответы на задания с развёрнутым ответом записываются под условием задачи, в отведенном для этого месте. Используется непрограммируемый калькулятор (на каждого ученика) и справочные данные, приведённые в контрольно-измерительных материалах. За выполнение работы выставляются две оценки: в виде количества набранных баллов, и по 5-бальной системе. Переводная шкала приведена в таблице. При выполнении работы можно пользоваться черновиком. На выполнение тестовой работы по физике отводится 45 минут.

В каждом варианте работы перед каждым типом задания предлагается инструкция, в которой приведены общие требования к оформлению ответов.

На основе баллов, выставленных за выполнение всех заданий работы, подсчитывается тестовый балл, который переводится в отметку по пятибалльной шкале в соответствии с рекомендуемой шкалой оценивания, приведенной в инструкции по проверке работы.

Максимальное количество баллов за выполненную без ошибок работу - 13 баллов.

Шкала для перевода первичных баллов в пятибалльную систему:

«2»	«3»	«4»	«5»
0-4	5-7	8-10	11-13

Система оценивания:

Часть 1: за выполнение каждого задания выставляется 1 балл.

Часть 2: задание 8 оцениваются в 2 балла, если верно указаны все элементы ответа, в 1 балл, если правильно указаны один и более элементов, и в 0 баллов, если ответ не содержит элементов правильного ответа. Задания 9,10 оцениваются в 2 балла, если дано полное решение задачи.

1 вариант

1	2	3	4	5	6	7	8
12	2	2	18	1	30	4	132

Задача 9

Работа, совершаемая газом при изобарном нагревании, равна: A= vRΔT

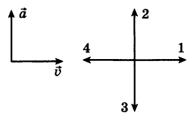
$$\Delta U = Q - A$$

 $A = 800 \text{ моль} \cdot 8,31 \text{ Дж/(моль} \cdot \text{K}) \cdot 500 \text{K} = 3,3 \text{МДж}$

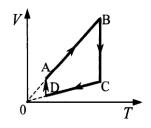
$$\Delta$$
 U= (9,4-3,3)МДж = 6,1 МДж

Задача 10

$$A = eU$$
 $A = mV^2/2$


$$eU = mV^2/2$$

$$U = mV^2/2e = 11.4 B$$


Вариант 1 Часть 1

К заданиям 2,5,7 даны 4 варианта ответа, из которых только один правильный. В заданиях 1,3,4,6 необходимо записать ответ.

- **1.** Автомобиль, трогаясь с места, движется с ускорением 3 м/c^2 . Чему будет равна скорость автомобиля через 4 c?
- 2. На левом рисунке представлены векторы скорости и ускорения тела в инерциальной системе отсчета. Какой из четырех векторов на правом рисунке указывает направление вектора равнодействующей всех сил, действующих на это тело?

- 1) 1 2) 2 3) 3 4) 4
- **3.** Импульс тела, движущегося по прямой в одном направлении, за 3с под действием постоянной силы изменился на 6 кг·м/с. Каков модуль действующей силы?
- **4.** Камень массой 0,2 кг, брошенный вертикально вверх скоростью 10 м/с, упал в том же месте со скоростью 8 м/с. Найдите работу сил сопротивления воздуха за время движения камня.
- **5.** На рисунке показан цикл, осуществляемый с идеальным газом. Количество вещества газа не меняется. Изобарному нагреванию соответствует участок

- 1) AB
- 2) BC
- 3) CD
- 4) DA
- 6. За один цикл рабочее тело теплового двигателя совершило работу 30 кДж и отдало холодильнику 70 кДж количества теплоты. Чему равен КПД двигателя?
- **7.** Сила, с которой взаимодействуют два точечных заряда, равна F. Какой станет сила взаимодействия, если величину каждого заряда уменьшить в 2 раза?
- 1) 4*F*

- 2) $\frac{F}{2}$ 3) 2F 4) $\frac{F}{4}$

Часть 2

- В задании 8 требуется указать последовательность цифр, соответствующих правильному ответу (цифры в ответе могут повторяться). В заданиях 9,10 необходимо полное решение задачи.
- 8. Плоский конденсатор зарядили и отключили от источника тока, а затем уменьшили расстояние между пластинами. Что произойдет при этом с электроемкостью конденсатора, зарядом на его пластинах и энергией конденсатора? Для каждой величины определите соответствующий характер изменения:
- 1) увеличится 2) уменьшится 3) не изменится

Электроемкость	Заряд на пластинах	Энергия конденсатора	

- 9. Для изобарного нагревания газа, количество вещества которого 800 моль, на 500 К ему сообщили количество теплоты 9,4 МДж. Определить изменение его внутренней энергии.
- 10. Двигаясь между двумя точками в электрическом поле, электрон приобрел скорость υ = 2000 км/с. Чему равно напряжение между этими точками m_e = 9,1×10 $^{-31}$ кг, e = 1,6×10 $^{-19}$ Кл.

Промежуточная аттестация по физике 11 класс (профильный)

Спецификация контрольных измерительных материалов для проведения промежуточной аттестации по физике

1. Назначение КИМ. Контрольно-измерительные материалы позволяют установить уровень усвоения учащимися 11 класса планируемых результатов рабочей программы «Физика. 11 класс»

2. Подходы к отбору содержания, разработке материалов и структуры КИМ.

Основной целью проведения промежуточной аттестации является установление фактического уровня теоретических знаний, практических умений и навыков по предмету физика

3. Структура КИМ.

Каждый вариант проверочной работы состоит из двух частей и включает 17 заданий. Часть 1 содержит 14 заданий с выбором ответа. К каждому заданию приводится несколько вариантов ответов, из которых верен только один.

Часть 2 содержит 3 расчетные задачи, для которых необходимо привести развернутый ответ.

4. Система оценивания отдельных заданий и проверочной работы в целом

Задание с выбором ответа считается выполненным, если выбранный номер ответа совпадает с верным ответом. Задания первой части работы (№1-7, 9-14) оцениваются в 1 балл; задание №8 — двумя баллами (по 1 баллу за каждое верное соответствие).

Задание с развернутым ответом оценивается 2 баллами, в случае ошибок в расчетах при верном ходе решения -1 баллом.

Максимальное количество баллов за выполненную без ошибок работу - 21 балл.

5. Продолжительность выполнения работы.

На выполнение всей контрольной работы отводится 45 минут.

6. Дополнительные материалы и оборудование.

Используется непрограммируемый калькулятор (на каждого ученика), необходимый справочный материал.

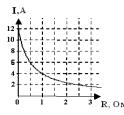
Рекомендуемая шкала оценивания:

Менее 11 баллов – «2», 11 - 14 баллов – «3», 15 - 18 баллов – «4», 19 - 21 баллов – «5»

Колификатор проверяемых умений в контрольной работе по физике в 11 классе.

№ п/п	Проверяемые специальные предметные умения	№ задания	
1	постоянный ток		
1.1	Применяют закон Ома для участка цепи для определения	1	
	изменения параметров электрической цепи		
1.2	Применяют закон Ома для участка цепи для расчета	15	
	параметров электрической цепи		
1.3	Применяют закон Ома для полной цепи для расчета	2	
	параметров электрической цепи		
2	МАГНИТНОЕ ПОЛЕ. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ		
2.1	Определяют направление вектора магнитной индукции	3	
	прямых токов		
2.2	Объясняют появление индукционного тока с помощью	4	
	явления электромагнитной индукции		
2.3	Применяют закон электромагнитной индукции для	5	
	объяснения величины ЭДС индукции		

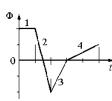
3	МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ		
3.1	Объясняют изменение параметров колебательного процесса	6	
3.2	Рассчитывают характеристики волны: длину волны,	7	
	частоту		
4	ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ		
4.1	Определяют характер изменения параметров	8	
	колебательного контура		
4.2	Определяют ход произвольного луча в тонкой линзе	9	
4.3	Применяют формулу тонкой линзы	16	
4.4	Используют закон преломления света для расчета	10	
	показателя преломления среды		
4.5	Рассчитывают параметры дифракционной решетки	11	
4.6	Рассчитывают параметры колебательного контура,	17	
	пользуясь рисунком		
5	КВАНТОВАЯ И ЯДЕРНАЯ ФИЗИКА		
5.1	Применяют закон Эйнштейна для фотоэффекта	12	
5.2	Рассчитывают количество ядер при естественном	13	
	радиоактивном распаде		
5.3	Определяют продукт α- и β-распада	14	


Коды правильных ответов

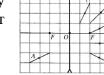
$N_{\underline{0}}$	ответы
п/п	
	Вариант 1
1	Γ
2	В
3	Γ
4	В
5	A
6	A
7	Б
8	ББ
9	Γ
10	Б
11	Γ
12	Γ
13	В
14	Б
15	20 B
16	6 см
17	80 мкФ

Вариант 1

Часть 1. Задания с выбором ответа.


- 1. Как изменится сила тока, протекающего через медный провод, если уменьшить в 2 раза напряжение между его концами, а длину этого провода увеличить в 2 раза?
- Б) уменьшится в 2 раза В) увеличится в 4 раза А) не изменится Г) уменьшится в 4 раза
- 2. К источнику тока с ЭДС = 6 В подключили реостат. На рисунке показан график изменения силы тока в реостате в зависимости от его сопротивления. Чему равно внутреннее сопротивление источника тока?

- A) 0 O_M
- Б) 1 Ом
- В) 0,5 Ом
- Γ) 2 O_M
- 3. По двум тонким прямым проводникам, параллельным друг другу, текут одинаковые токи і (см. рисунок). Как направлен вектор индукции создаваемого ими магнитного поля в точке А, находящейся посередине между проводниками?


- А) влево
- Б) вправо
- В) к нам
- Γ) от нас
- 4. На горизонтальном столе на большом расстоянии друг от друга лежат два одинаковых неподвижных металлических кольца. Два полосовых магнита падают северными полюсами вниз так, что один попадает в центр первого кольца, другой падает рядом со вторым кольцом. До удара магнитов о стол ток
- А) возникает только в первом кольце
- В) возникает в обоих кольцах
- Б) возникает только во втором кольце
- Г) не возникает ни в одном из колец
- 5. На рисунке показан график зависимости магнитного потока, пронизывающего контур, от времени. На каком участке графика наблюдается минимальная (по модулю) ЭДС индукции, возникающая в контуре?

- A)1 Б)2
- B)3
- Γ)4
- 6. Если длину математического маятника уменьшить в 4 раза, то период его гармонических колебаний
- А) увеличится в 2 раза
- В) уменьшится в 2 раза
- Б) увеличится в 4 раза
- Г) уменьшится в 4 раза
- 7. Какова частота звуковых колебаний в среде, если скорость звука в этой среде 500 м/с, а длина волны 2 м?
- А) 1000 Гц Б) 250 Гц

- В) 0,004 Гц Г) 250000 Гц
- 8. При настройке колебательного контура генератора, задающего частоту радиопередатчика, электроёмкость его конденсатора уменьшили. Как при этом изменятся период колебаний тока в контуре и длина волны излучения? Для каждой величины определите соответствующий характер изменения. В ответе запишите только цифры, соответствующие ответам
- А) увеличится
- Б) уменьшится
- В) не изменится

9. На рисунке изображён луч света А, падающий на тонкую рассеивающую линзу с главными фокусами F. После прохождения через линзу этот луч будет распространяться в направлении, обозначенном цифрой:

B) 3 А) 1 Б) 2

Γ) 4 Д) 5

10. На границу раздела АВ двух прозрачных сред падает световой луч. Если показатель преломления первой среды $n_{\rm I} = 1.36$, то показатель преломления второй среды $n_{\rm II}$ равен:

A) 1,60

Б) 1,44

B) 1,31

 Γ) 1,28

Д) 1,06

11. При нормальном падении света с длиной волны 455 нм на дифракционную решётку с периодом d = 3.64 мкм порядок m дифракционного максимума, наблюдаемого под углом 30° к нормали, равен:

A) 1

Б) 2

B) 3

Γ) 4

12. Работа выхода для материала пластины равна 2 эВ. Пластина освещается монохроматическим светом. Какова энергия фотонов падающего света, если максимальная кинетическая энергия фотоэлектронов равна 1,5 эВ?

A) 0.5 эВ

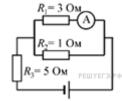
Б) 1.5 эВ

В) 2 эВ

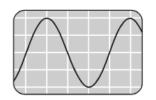
Г) 3.5 эВ

13. Имеется 10^8 атомов радиоактивного изотопа йода, период полураспада которого 25 мин. Какое количество ядер изотопа распадается за 50 мин?

A) 2.5×10^7


Б) 5×10^7 В) 7.5×10^7 Г) 10^8

14. Радиоактивный полоний ²¹⁶₈₄ Ро, испытав один а-распад и два b-распада, превратился в изотоп


A) $^{212}_{82}Pb$ B) $^{212}_{84}Po$ B) $^{212}_{83}Bi$ F) $^{208}_{81}Tl$

Часть 2. Задания с развернутым ответом

15. В цепи, изображённой на рисунке, идеальный амперметр показывает 1 А. Найдите напряжение на резисторе R3.

- 16. Карандаш высотой 9 см расположен перпендикулярно главной оптической оси тонкой собирающей линзы на расстоянии 50 см от линзы. Оптическая сила линзы 5 дптр. Чему равна высота изображения карандаша?
- 17. Ученик при помощи осциллографа изучал колебания в колебательном контуре, состоящем из последовательно соединенных проволочной катушки, конденсатора и резистора с небольшим сопротивлением. Индуктивность катушки равна 5 мГн. На рисунке показан вид экрана осциллографа при

подключении его щупов к выводам конденсатора для случая резонанса. Числа на переключателе осциллографа означают, какому промежутку времени соответствует одно деление экрана осциллографа. Определите, чему равна ёмкость используемого в колебательном контуре конденсатора?

Промежуточная аттестация по физике 11 класс (базовый)

Спецификация контрольных измерительных материалов для проведения промежуточной аттестации по физике

1. Назначение КИМ. Контрольно-измерительные материалы позволяют установить уровень усвоения учащимися 11 класса планируемых результатов рабочей программы «Физика. 11 класс»

2. Подходы к отбору содержания, разработке материалов и структуры КИМ.

Основной целью проведения промежуточной аттестации является установление фактического уровня теоретических знаний, практических умений и навыков по предмету физика

3. Структура КИМ.

Каждый вариант проверочной работы включает 14 заданий. К каждому заданию приводится несколько вариантов ответов, из которых верен только один.

4. Система оценивания отдельных заданий и проверочной работы в целом

Задание с выбором ответа считается выполненным, если выбранный номер ответа совпадает с верным ответом. Задания работы (№1-7, 9-14) оцениваются в 1 балл; задание №8 – двумя баллами (по 1 баллу за каждое верное соответствие).

Максимальное количество баллов за выполненную без ошибок работу - 15 баллов.

5. Продолжительность выполнения работы.

На выполнение всей контрольной работы отводится 45 минут.

6. Дополнительные материалы и оборудование.

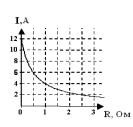
Используется непрограммируемый калькулятор (на каждого ученика), необходимый справочный материал.

Рекомендуемая шкала оценивания:

Менее 7 баллов – «2», 7 - 9 баллов – «3», 10 - 12 баллов – «4», 13 - 15 баллов – «5»

Кодификатор проверяемых умений в контрольной работе по физике в 11 классе.

№ п/п	Проверяемые специальные предметные умения	№ задания	
1	постоянный ток		
1.1	Применяют закон Ома для участка цепи для определения	1	
	изменения параметров электрической цепи		
1.2	Применяют закон Ома для полной цепи для расчета	2	
	параметров электрической цепи		
2	МАГНИТНОЕ ПОЛЕ. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ		
2.1	Определяют направление вектора магнитной индукции	3	
	прямых токов		
2.2	Объясняют появление индукционного тока с помощью	4	
	явления электромагнитной индукции		
2.3	Применяют закон электромагнитной индукции для	5	
	объяснения величины ЭДС индукции		
3	МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ		
3.1	Объясняют изменение параметров колебательного процесса	6	
3.2	Рассчитывают характеристики волны: длину волны,	7	
	частоту		
4	ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛ	ны	
4.1	Определяют характер изменения параметров	8	


	колебательного контура	
4.2	Определяют ход произвольного луча в тонкой линзе	9
4.3	Используют закон преломления света для расчета	10
	показателя преломления среды	
4.4	Рассчитывают параметры дифракционной решетки	11
5	КВАНТОВАЯ И ЯДЕРНАЯ ФИЗИКА	
5 5.1	КВАНТОВАЯ И ЯДЕРНАЯ ФИЗИКА Применяют закон Эйнштейна для фотоэффекта	12
	, ,	12 13
5.1	Применяют закон Эйнштейна для фотоэффекта	

Коды правильных ответов

No	ответы
Π/Π	
	Вариант 1
1	Γ
2	В
3	Γ
4	В
5	A
6	A
7	Б
8	ББ
9	Γ
10	Б
11	Γ
12	Γ
13	В
14	Б

Вариант 1

- 1. Как изменится сила тока, протекающего через медный провод, если уменьшить в 2 раза напряжение между его концами, а длину этого провода увеличить в 2 раза?
- A) не изменитсяв 4 раза
- Б) уменьшится в 2 раза
- В) увеличится в 4 раза
- Г) уменьшится
- 2. К источнику тока с ЭДС = 6 В подключили реостат. На рисунке показан график изменения силы тока в реостате в зависимости от его сопротивления. Чему равно внутреннее сопротивление источника тока?

А) 0 Ом Б) 1 Ом	В) 0,5 Ом	Г) 2 Ом	
токи і (см. рисунок). точке А, находящейс	_		
неподвижных металл полюсами вниз так, ч	ических кольца. Два поло	оянии друг от друга лежат два одина осовых магнита падают северными о первого кольца, другой падает рядо к	
	в первом кольце во втором кольце	В) возникает в обоих кольцах Г) не возникает ни в одном из коле	ец
контур, от времени. I (по модулю) ЭДС ин		гнитного потока, пронизывающего наблюдается минимальная онтуре?	
гармонических колеб А) увеличится в 2 раз	· · · · · · · · · · · · · · · · · · ·	_	
длина волны 2 м?	уковых колебаний в среде Гц В) 0,004 Гц Г) 25	, если скорость звука в этой среде 5 0000 Гц	00 м/с, а
радиопередатчика, эл период колебаний то определите соответст соответствующие от	пектроёмкость его конден ка в контуре и длина воли воли воли воли воли в измене ветам	ератора, задающего частоту сатора уменьшили. Как при этом изгны излучения? Для каждой величинь ения. В ответе запишите только цифр	Ы
с главными фокуса	ми F . После прохожденаправлении, обозначенно	ий на тонкую рассеивающую линзу ния через линзу этот луч будет м цифрой:	

10. На границу раздела AB двух прозрачных сред падает световой луч. Если показатель преломления первой среды $n_{\rm II}=1,36,$ то показатель преломления второй среды $n_{\rm II}$ равен: A) 1,60
Б) 1,44
B) 1,31
Г) 1,28
Д) 1,06

11. При нормальном падении света с длиной волны 455 нм на дифракционную решётку с периодом d = 3,64 мкм порядок m дифракционного максимума, наблюдаемого под углом 30° к нормали, равен:

刀) 5

12. Работа выхода для материала пластины равна 2 эВ. Пластина освещается монохроматическим светом. Какова энергия фотонов падающего света, если максимальная кинетическая энергия фотоэлектронов равна 1,5 эВ?

А) 0,5 эВ

Б) 1,5 эВ

В) 2 эВ

Г) 3,5 эВ

13. Имеется 10^8 атомов радиоактивного изотопа йода, период полураспада которого 25 мин. Какое количество ядер изотопа распадается за 50 мин?

A) 2.5×10^7

Б) 5×10⁷

B) 7.5×10^7 Γ) 10^8

14. Радиоактивный полоний $^{216}_{84}$ Ро, испытав один а-распад и два b-распада, превратился в изотоп

A) $^{212}_{82}Pb$ B) $^{212}_{84}Po$ B) $^{212}_{83}Bi$ F) $^{208}_{81}Tl$